
Journal of Mathematical Chemistry Vol. 31, No. 3, April 2002 (© 2002)

DNA computing of bipartite graphs for maximum matching

Shiying Wang ∗

Department of Control Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074 and

Department of Mathematics, Shanxi University, Taiyuan 030006, People’s Republic of China

Received 1 March 2002

Let M be a matching in a graph G. It is defined that an M-augmenting path must obtain
one element of M . In this paper, it is obtained that a matching M in a graph G is a maximum
matching if and only if G contains no M-augmenting path and M is a maximal matching
in G. It supplies a theoretical basis to DNA computing. A detailed discussion is given of
DNA algorithms for the solutions of the maximal matching problem and maximum matching
one in a bipartite graph.

KEY WORDS: maximum matching, maximal matching, augmenting path, DNA computing

1. Introduction

As it is known DNA (deoxyribonucleic acid) is a double helix in which the two
coiled strands (chains) are composed each of only different nucleotides. Every nu-
cleotide consists of phosphate, sugar and one of the following bases: adenine (abbre-
viated A), thymine (T), guanine (G) and cytosine (C). The two chains are held together
by hydrogen bonds which exist only between pairs of complementary bases, which are
A–T and G–C. It follows that knowing one chain, the other (complementary) can be
easily reconstructed. DNA computing must not be confused with biocomputing. Usu-
ally, biocomputing means everything that computer scientists can do to help biologists
to study genes. For example, algorithms and data structures have been developed to in-
vestigate the properties of the sequences of nucleotides in DNA or RNA, and those of
amino acids in the primary structure of a protein. In DNA computing, instead, mole-
cular biology is suggested to solve a problem for computer scientists. There are many
reasons to investigate DNA computing. As known, the Hamiltonian Path Problem is an
NP-complete one. Adleman’s experiment [1] showed that DNA can be used to solve the
Hamiltonian Path Problem and bio-steps are O(n), where n is the number of the points
of the directed graph. Matching theory has a wide range of application. Some practical
problems can be converted into matching problems. For example, suppose one has two
computers available and p jobs to be processed on these machines. We will assume that
any job can be run on either machine. Indeed, we may assume that the computers are

∗ This work is supported by China National Science Foundation.

271

0259-9791/02/0400-0271/0  2002 Plenum Publishing Corporation

272 S. Wang / DNA computing of bipartite graphs for maximum matching

identical. Let us also suppose that p jobs are partially ordered in the sense that for any
two jobs Ji and Jk, Ji � Jk if Ji must be completed before Jk can be started. If all jobs
require an equal amount of time to complete, what is the shortest possible time sufficient
to run all p jobs? Let us model this situation using an undirected graph G as follows. Let
the points of G be the jobs J1, J2, . . . , Jp and let Ji be adjacent to Jk if and only if they
are incomparable in the partial order. So this problem belongs to the class of maximum
matching problems. Thus, maximum matching problems in a graph naturally arise in
computer science. The paper is organized into four sections. In the second section, we
give a theorem of the matching theory. It supplies a theoretical basis to sections 3 and 4.
In section 3, a detailed discussion is given of the DNA algorithm for the solution of the
maximal matching problem in a bipartite graph. In section 4, on the basis of section 3, a
detailed discussion is also given of the DNA algorithm for the solution of the maximum
matching problem in a bipartite graph.

2. Matching theory

An undirected graph G consists of a finite non-empty set of elements V (G) called
points and a multi-set of unordered pairs of points E(G) called lines. If uv is a line in
graph G, line uv is said to join points u and v, to be incident with points u and v, and
points u and v are said to be adjacent. Two lines which share a point are also said to
be adjacent. A line with distinct ends is called a link. A subset M of E(G) is called a
matching in G if its elements are links and no two are adjacent in G. A matching M

saturates a point v, and v is said to be M-saturated, if some line of M is incident with v;
otherwise, v is M-unsaturated. An M-alternating path in G is a path whose line are
alternately in E(G)−M and M. An M-augmenting path which contains one element of
M is an M-alternating path whose origin and terminus are M-unsaturated. A matching
M is a maximum matching if G has no matching M ′ with |M ′| > |M|. For M ⊆ E(G),
set V (M) = {v ∈ V (G): there is x ∈ V (G) such that vx ∈ M}. A matching M is a
maximal matching if G−V (M) has no line e such that M ∪ {e} is a matching in G. Let
G[S] denote the subgraph of G induced by S. M1⊕M2 denotes the symmetric difference
of M1 and M2. If X is any set in V (G), let �(X) denote all points in V (G) which are
adjacent to at least one point of X. The notations and definitions not defined here can be
found in [2,3].

Theorem 2.1. A matching M in a graph G is a maximum matching if and only if G con-
tains no M-augmenting path and M is a maximal matching in G.

Proof. (only if) Let M be a maximum matching of G, and suppose, on the contrary,
that G obtains an M-augmenting path v0v1 . . . v2m+1. Define M ′ ⊆ E(G) by

M ′ = (
M − {v1v2, v3v4, . . . , v2m−1v2m}

) ∪ {v0v1, v2v3, . . . , v2mv2m+1}.
Then M ′ is a matching of G, and |M ′| = |M| + 1. Thus M is not a maximum matching
in G, a contradiction. Therefore G contains no M-augmenting path.

S. Wang / DNA computing of bipartite graphs for maximum matching 273

M is maximal because M is maximum in G.
(if) Let G contain no M-augmenting path and let M be a maximal matching in G.

Suppose, on the contrary, that M is not a maximum matching in G. Let M ′ be a maxi-
mum matching in G. Then |M ′| > |M|. If M ⊂ M ′, then there exists a line e belonging
to M ′ −M in G[V (G)−V (M)]. Therefore M ∪{e} is a matching of G, a contradiction.
Thus M �⊆ M ′. Let H = M ⊕ M ′. Then M ∩ H �= ∅ and M ′ ∩ H �= ∅. If there
exists a line e ∈ M ∩ H which is not adjacent to any line of M ′ ∩ H , then M ′ ∪ {e} is
a matching of G, contradicting the maximality of M ′. Therefore every line of M ∩ H
is adjacent to one or two lines of M ′ ∩ H . If there exists a line e′ ∈ M ′ ∩ H which is
not adjacent to any line of M ∩ H , then e′ is a line in G[V (G) − V (M)] and M ∪ {e}
is a matching in G, contradicting the maximality of M. Therefore every line of M ′ ∩H
is adjacent to one or two lines of M∩H . Thus each component of H is either an even cy-
cle with lines alternately in M and M ′ or else a path with lines alternately in M and M ′.
By |M ′| > |M|, there must be a path component P of H , and P must start and end with
lines of M ′. The origin and terminus of P , being M ′-saturated in H , are M-unsaturated
in G. Thus P is an M-augmenting path in G, a contradiction. Therefore M is maximum
in G. The proof is complete. �

3. DNA computing of bipartite graphs for maximal matching

In this section, G denotes a bipartite graph.
A function f : A→ B is said to be injective (or one-to-one) provided

for all a, a′ ∈ A, a �= a′ ⇒ f (a) �= f
(
a′

)
.

A function f is surjective provided f (A) = B. A function f is said to be bijective (or
a one-to-one correspondence) if it is both injective and surjective. Let {Ai | i ∈ I } be
a family of sets indexed by a (nonempty) set I . The Cartesian product of the sets Ai is
the set of all functions f : I → ⋃

i∈I Ai such that f (i) ∈ Ai for all i ∈ I . It is denoted∏
i∈I Ai . If I = {1, 2, . . . , t}, the product

∏
i∈I Ai is often denoted by A1×A2×· · ·×At

and is identified with the set of all ordered t-tuples (a1, a2, . . . , at), where ai ∈ Ai for
i = 1, 2, . . . , t .

Let Sn be the symmetric group. The product of cycles αβ means β followed by α.
For example, (12)(13)=(132). We will be using a one-row representation for permuta-
tion. Thus, the permutation whose cycle representation is (12)(345) will be represented
by us as 21453.

Let m be a minimum integer such that 4m � n. Set 〈n〉 = {1, 2, . . . , n}, 〈4m〉 =
{1, 2, . . . , 4m} and Ai = {1, 2, 3, 4}.

Theorem 3.1. There exists an injection from 〈n〉 to
∏m

i=1 Ai .

Proof. There exists a bijection f from 〈4m〉 to
∏m

i=1 Ai . Because of n � 4m, f is an
injection from 〈n〉 to

∏m
i=1 Ai . The proof is complete. �

274 S. Wang / DNA computing of bipartite graphs for maximum matching

We will use the set {A, T ,G,C} instead of {1, 2, 3, 4}.

Corollary 3.2. Let Bi = {A, T ,G,C}. Then there exists an injection from 〈n〉 to∏m
i=1 Bi .

By corollary 3.2, let f be an injection from 〈n〉 to
∏m

i=1 Bi . For any g =
i1i2 . . . in ∈ Sn, let f (g) = f (i1)f (i2) . . . f (in) and f −(g) = f −(in) . . . f −(i2)f −(i1).
For example, f : 1 → AT, 2 → AG, 3 → AC, 4 → TG, 5 → TC. For g = 12345,
f (g) = AT AG ACT GTC3′ and f −(g) = 3′CT GT C AG ATA. The symbol f (g)
is used to indicate the complementary base of each base of f (g). For example,
f (g) = AGCT 3′ and f (g) = 3′T CGA. Let g∗ ∈ Sn with f (g) = f −(g∗). Let
f (Sn) = {f (g): g ∈ Sn} and Sc = {f (g): f −(g) = f (g), g ∈ Sn}. Then Sc ⊆ f (Sn).

Proposition 3.3. f −(g) = f (g) if and only if f (g) can form a hairpin (a completely
complementary double strand).

Proof. (only if). Suppose f −(g) = f (g). Then nm is even (n and m are defined as
above). The ith base of f (g) is complementary to the ith base of f −(g). The ith base of
f −(g) and the (mn− i+ 1)th base of f (g) are the same. Therefore the ith base of f (g)
is complementary to the (mn− i + 1)th base of f (g). Thus f (g) can form a hairpin.

(if). Suppose that f (g) can form a hairpin. Then the ith base of f (g) is comple-
mentary to the (mn − i + 1)th base of f (g). The (mn − i + 1)th base of f (g) and the
ith base of f −(g) are the same. Therefore the ith base of f (g) is complementary to the
ith base of f −(g), i.e., f −(g) = f (g). The proof is complete. �

Proposition 3.4. Let gi, gj ∈ Sn with gi �= gj . Then f (gi) �= f (gj).

Proof. Let gi = i1i2 . . . in and gj = j1j2 . . . jn. Since gi �= gj , there is an integer b
(1 � b � n) such that ib �= jb. f (ib) �= f (jb) because f is injective. Therefore
f (gi) �= f (gj). The proof is complete. �

Theorem 3.5. Let G be a bipartite graph with |V (G)| = k. Then there exists a positive
integer n such that n! � 2k + |Sc|.

Proof. Let g = i1i2 . . . in with f (g) ∈ Sc. Then by proposition 3.3, f (g) can form a
hairpin. Therefore the ith base of f (g) is complementary to the (mn− i + 1)th base of
f (g). Thus, f (i1) = f −(in), . . . , f (in/2) = f −(in/2+1). Therefore |Sc| � n(n−2) · · · 2.
We replace n with n+ 1. We have the following:

(n+ 1)! − (n+ 1)(n− 1)(n− 3) · · · 3
= (n+ 1)

(
n! − (n− 1)(n− 3) · · · 3)

> (n+ 1)
(
n! − n(n− 2) · · · 4 · 2)

= (
n! − n(n− 2) · · · 2)+ n

(
n! − n(n− 2) · · · 2)

.

S. Wang / DNA computing of bipartite graphs for maximum matching 275

Therefore there exists a positive integer n such that n! � 2k + |Sc|. The proof is com-
plete. �

By theorem 3.5, there exists a minimum integer n such that n! � 2k + |Sc|. Let
V (G) = {1, 2, . . . , k}. We give the following.

Label algorithm 3.6.
Step 0. i := 1.
Step 1. If i = k + 1, then stop.
Step 2. Let f (gi) ∈ f (Sn) − Sc. Assign f (gi) to the label of the point i of G.

f (Sn)− Sc := f (Sn)− {f (gi), f (g∗i)} and i := i + 1. Return to step 1.

We begin by labeling two test tubes: Points and Lines. Let us abbreviate these
labels to PO and LI.

Design 3.7. For every i ∈ V (G), by label algorithm 3.6 the point i is labeled by f (gi).
Therefore PO = {f (gi): 1 � i � k}. In LI we place the following molecules that
encode any line (ij) ∈ E(G):

f (gi)f (gj),

where f (gi) is the label of the point i and f (gj) is the label of the point j .

Theorem 3.8. The following is contained:

(a) all labels of the points of G are different;

(b) the label of each point of G does not form a hairpin;

(c) the label of each arc of G does not form a hairpin.

Proof. (a) By proposition 3.4 and label algorithm 3.6, the all labels of the points of D
are different.

(b) By proposition 3.3 and label algorithm 3.6, the label of each point of G does
not form a hairpin.

(c) By proposition 3.3, label algorithm 3.6 and design 3.7, the label of each arc
of G does not form a hairpin. The proof is complete. �

DNA algorithm 3.9.
Step 1. Add PO and LI. Add a ligase. (Allow time for ligation.)
Step 2. Make a gel separation.
Step 3. Make polymerase chain reaction and sequence for all ssDNAs (single

stranded DNA molecules) of length = n and dsDNAs (double stranded DNA mole-
cules).

Comment. (a) We can obtain all points corresponding to all ssDNAs of length = n.
They are exposed.

276 S. Wang / DNA computing of bipartite graphs for maximum matching

(b) We can obtain all lines corresponding to all dsDNAs. They form a maximal
matching.

4. DNA computing of bipartite graphs for maximum matching

Let G = (U,W) be a connected bipartite graph with the bipartition U and W . Let
M be a maximal matching of G = (U,W) and let M cover U1 ⊆ U and W1 ⊆ W . By
DNA algorithm 3.9, we obtain M, U1 and W1. Set U ′ = U − U1, W ′ = W −W1 and
U ′′ = �(W ′). U ′′ ⊆ U because G is bipartite. U ′ ∩ U ′′ = ∅ because M is a maximal
matching. If U ′ or W ′ = ∅, then M is maximum. So suppose that U ′ �= ∅ �= W ′. Then
U ′′ �= ∅. An augmenting path must start by constructing an alternating path from the
exposed points. Because an augmenting path must have one endpoint in U and the other
in W , it is no loss of generality to start growing alternating paths only from exposed
points of U .

The digraph with respect to G = (U,W) and M, denoted by D = (U,A), is the
digraph with point set U and arc set A, where (u1, u2) ∈ A if and only if u1 is adjacent
to the mate of u2 in G.

Theorem 4.1. Let M be a maximal matching of G = (U,W) and ui ∈ U,wi ∈ W(1 �
i � t, t � 2). Then there exists an M-augmenting path u1w1u2w2 . . . utwt in G if and
only if there exists a directed path u1u2 . . . ut with u1 ∈ U ′ and ut ∈ U ′′ in D = (U,A).

Proof. (only if) Let u1w1u2w2 . . . utwt be an M-augmenting path in G. Then
{wiui+1: 1 � i � t − 1} ⊆ M, and u1 and wt are exposed in G. Therefore
u1 ∈ U ′, wt ∈ W ′ and ut ∈ U ′′ in G. By the definition of D, u1u2 . . . ut is a directed
path from u1 ∈ U ′ to ut ∈ U ′′ in D.

(if) Let u1u2 . . . ut be a directed path from u1 ∈ U ′ to ut ∈ U ′′ in D. Then by
the definition of D, u1w1u2w2 . . . ut is an M-alternating path with {wiui+1: 1 � i �
t − 1} ⊆ M in G. Since ut ∈ U ′′, there exists a point wt ∈ W ′ such that wt is adjacent
to ut . Thus, u1w1u2w2 . . . utwt is an M-augmenting path. The proof is complete. �

Example 4.2. In figure 1, the graph (a) is a bipartite graph. LetM = {u1w4, u3w2, u4w3,

u5w6, u6w5}. Then M is a maximal matching. U ′ = {u2}, W ′ = {w1} and U ′′ = {u1}.
The digraph (b) corresponds to the graph (a).

We begin by labeling three test tubes: Initials, Middles and Finals. Let us abbrevi-
ate these labels to INI, MID and FIN.

Design 4.3. For every point i ∈ U ′, in INI we place the following molecules that encode
the point i:

f (gi)REGION1f (gi)

f (gi)REGION1,

∗

S. Wang / DNA computing of bipartite graphs for maximum matching 277

Figure 1.

where f (gi) is given by label algorithm 3.6 and the REGION1 is put by an especial
dsDNAs which can be cut by a special restriction enzyme.

For every point i ∈ U ′′, in FIN we place the following molecules that encode the
point i:

f (gi)REGION2f (gi)

REGION2f (gi),

∗
where f (gi) is given by label algorithm 3.6 and the REGION2 is put by an especial
dsDNAs which can be cut by a special restriction enzyme.

For every point i ∈ U − U ′ − U ′′, in MID we place the following molecules that
encode the point i:

f (gi)f (gi),

where f (gi) is given by label algorithm 3.6.
For every arc (i, j), in MID we place the following molecules that encode the arc

(i, j):

f (gi)f (gj),

where f (gi) and f (gj) are given by label algorithm 3.6.
By label algorithm 3.6 and design 4.3, we have the following.

Theorem 4.4. The following is contained:

(a) all labels of the points of D are different;

(b) the label of each point of D does not form a hairpin;

(c) the label of each arc of D does not form a hairpin.

278 S. Wang / DNA computing of bipartite graphs for maximum matching

As is typical in DNA computing, each of three test tubes INI, FIN and MID will contain
on the order of a picomole of each of the chosen molecules, i.e., on the order of a trillion
of each.

DNA algorithm 4.5.
Step 1. Attract the molecules of INI and the molecules of FIN to the surface by a

biotin. The starred region indicates the region of attachment to the surface.
Step 2. Add MID. Add a ligase. (Allow time for ligation.)
Step 3. Wash away excess MID and ligase.
Step 4. Add restriction enzyme 2. (Allow time for enzyme 2 to act.)
Step 5. Wash away all DNA not attached to the surface and all enzyme.
Step 6. Add ligase. (Allow time for ligation.)
Step 7. Wash away ligase.
Step 8. Add restriction enzyme 1. (Allow time for enzyme 1 digestion.)
Step 9. Wash away all DNA not attached to the surface and all enzyme.
Step 10. Add ligase. (Allow time for ligation.)
Step 11. Wash away ligase.
Step 12. Detach dsDNAs from the surface. Make a gel separation.
Step 13. Make polymerase chain reaction and sequence for all dsDNAs of length

� 4n.

Theorem 4.6. If there exists a path from i1 ∈ U ′ to iv ∈ U ′′ in D, the restriction
enzyme 1 can only cut the dsDNAs of REGION1 and the restriction enzyme 2 can only
cut the dsDNAs of REGION2, then the path from i1 ∈ U ′ to iv ∈ U ′′ can be obtained by
DNA algorithm 4.5.

Proof. Let i1e1i2e2 . . . iv−1ev−1iv be a path with i1 ∈ U ′ and iv ∈ U ′′. Applying step 1
of DNA algorithm 4.5, attract the dsDNAs of INI of design 4.3 and the dsDNAs of FIN
of design 4.3 to the surface by a biotin. Therefore,

f (gi1)REGION1f (gi1)

f (gi1)REGION1

and

f (giv)REGION2f (giv)

REGION2f (giv)

are attracted to the surface by a biotin. Applying step 2 of DNA algorithm 4.5, we can
obtain the following path (abbreviated P1):

S. Wang / DNA computing of bipartite graphs for maximum matching 279

f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)REGION2f (giv)
f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)REGION2f (giv).

Applying step 3 of DNA algorithm 4.5, wash away excess MID and ligase. Applying
step 4 of DNA algorithm 4.5, we can obtain the following:

f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)REGION2f (giv)
f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)REGION2f (giv).

Applying step 5 of DNA algorithm 4.5, cannot wash away the above dsDNAs because
they are still attached to the surface. Applying steps 6, 7 of DNA algorithm 4.5, obtain
P1 again. Applying step 8 of DNA algorithm 4.5, we can obtain the following:

f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)REGION2f (giv)
f (gi1)REGION1f (gi1)f (gi2)f (gi2) . . . f (giv)f (giv).

Applying step 9 of DNA algorithm 4.5, cannot wash away the above dsDNAs because
they are still attached to the surface. Applying steps 10, 11 of DNA algorithm 4.5, obtain
P1 again. Applying step 12 of DNA algorithm 4.5, detach P1 from the surface. Make
a gel separation and obtain all dsDNAs corresponding to the paths from one of U ′ to
one of U ′′. Clearly, P1 is one of them. Applying step 13 of DNA algorithm 4.5, make
polymerase chain reaction and sequence for all dsDNAs of the paths from one of U ′ to
one of U ′′. Finally, we can obtain P1. The proof is complete. �

Remark. If there is no path from one of U ′ to one of U ′′ corresponding to one dsDNAs,
then there is no M-augmenting path in G = (U,W). By theorem 2.1 M is maximum.
If there is a path P from one of U ′ to one of U ′′ corresponding to one dsDNAs, then
P corresponds to an M-augmenting path P ′ in G = (U,W). Let M ′ = M ⊕ P ′. Then
M ′ is a maximal matching in G = (U,W). We proceed as above. Finally, we can obtain
that there is no path from one of U ′ to one of U ′′ in D = (U,A) corresponding to one
dsDNAs. Thus we can obtain a maximum matching in G.

Acknowledgements

The author would like to thank Professor Yixun Lin and Professor Jin Xu.

References

[1] G. Pǎun et al., DNA Computing (Springer, Berlin, 1998).
[2] L. Lovász and M.D. Plummer, Matching Theory (Elsevier Science, New York, 1986).
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[4] C.H. Papadimitriou, Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, Engle-

wood Cliffs, NJ, 1982).
[5] G. Pǎun, Computing with Bio-Molecules: Theory and Experiments (Springer, Singapore, 1998).

