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DNA computing of bipartite graphs for maximum matching
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Let M be amatching in agraph G. It is defined that an M-augmenting path must obtain
one element of M. In this paper, itis obtained that a matching M in agraph G isamaximum
matching if and only if G contains no M-augmenting path and M is a maximal matching
in G. It supplies a theoretical basis to DNA computing. A detailed discussion is given of
DNA algorithms for the solutions of the maximal matching problem and maximum matching
onein abipartite graph.
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1. Introduction

As it is known DNA (deoxyribonucleic acid) is a double helix in which the two
coiled strands (chains) are composed each of only different nucleotides. Every nu-
cleotide consists of phosphate, sugar and one of the following bases: adenine (abbre-
viated A), thymine (T), guanine (G) and cytosine (C). The two chains are held together
by hydrogen bonds which exist only between pairs of complementary bases, which are
A-T and G-C. It follows that knowing one chain, the other (complementary) can be
easily reconstructed. DNA computing must not be confused with biocomputing. Usu-
aly, biocomputing means everything that computer scientists can do to help biologists
to study genes. For example, algorithms and data structures have been developed to in-
vestigate the properties of the sequences of nucleotides in DNA or RNA, and those of
amino acids in the primary structure of a protein. In DNA computing, instead, mole-
cular biology is suggested to solve a problem for computer scientists. There are many
reasons to investigate DNA computing. As known, the Hamiltonian Path Problem is an
NP-complete one. Adleman’s experiment [1] showed that DNA can be used to solve the
Hamiltonian Path Problem and bio-steps are O (n), where n is the number of the points
of the directed graph. Matching theory has a wide range of application. Some practical
problems can be converted into matching problems. For example, suppose one has two
computers available and p jobs to be processed on these machines. We will assume that
any job can be run on either machine. Indeed, we may assume that the computers are
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identical. Let us also suppose that p jobs are partially ordered in the sense that for any
two jobs J; and J;, J; < J if J; must be completed before J; can be started. If all jobs
require an equal amount of time to complete, what is the shortest possible time sufficient
torunall p jobs? Let usmodel this situation using an undirected graph G asfollows. Let
the points of G be thejobs Ji, />, ..., J, and let J; be adjacent to J; if and only if they
are incomparable in the partial order. So this problem belongs to the class of maximum
matching problems. Thus, maximum matching problems in a graph naturaly arise in
computer science. The paper is organized into four sections. In the second section, we
give atheorem of the matching theory. It supplies atheoretical basis to sections 3 and 4.
In section 3, adetailed discussion is given of the DNA agorithm for the solution of the
maximal matching problem in a bipartite graph. In section 4, on the basis of section 3, a
detailed discussion is aso given of the DNA algorithm for the solution of the maximum
matching problem in a bipartite graph.

2. Matchingtheory

An undirected graph G consists of afinite non-empty set of elements V (G) caled
points and a multi-set of unordered pairs of points E(G) called lines. If uv isalinein
graph G, line uv is said to join points « and v, to be incident with points # and v, and
points u and v are said to be adjacent. Two lines which share a point are also said to
be adjacent. A line with distinct endsis caled alink. A subset M of E(G) iscalled a
matching in G if its elements are links and no two are adjacent in G. A matching M
saturates apoint v, and v is said to be M-saturated, if someline of M isincident with v;
otherwise, v is M-unsaturated. An M-alternating path in G is a path whose line are
aternately in E(G) — M and M. An M-augmenting path which contains one element of
M is an M-aternating path whose origin and terminus are M-unsaturated. A matching
M isamaximum matching if G hasno matching M’ with |[M’| > |M|. For M C E(G),
st V(M) = {v € V(G): thereisx € V(G) suchthat vx € M}. A matching M isa
maximal matching if G — V(M) hasno line e such that M U {e¢} isamatchingin G. Let
G|[S] denote the subgraph of G induced by S. M;® M, denotes the symmetric difference
of M, and M,. If X isany setin V(G), let I'(X) denote al points in V(G) which are
adjacent to at least one point of X. The notations and definitions not defined here can be
foundin[2,3].

Theorem 2.1. A matching M in agraph G isamaximum matching if and only if G con-
tains no M-augmenting path and M isamaximal matchingin G.

Proof. (only if) Let M be a maximum matching of G, and suppose, on the contrary,
that G obtains an M-augmenting path vov; . .. va,41. Define M’ C E(G) by

M' = (M — {v1v2, V34, . . ., V2u—1V2n}) U {Vov1, V2Vs, . . . , V2nV2mt}-

Then M’ isamatching of G, and |[M'| = |M| + 1. Thus M is hot a maximum matching
in G, acontradiction. Therefore G contains no M-augmenting path.
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M ismaximal because M ismaximumin G.

(if) Let G contain no M-augmenting path and let M be a maximal matching in G.
Suppose, on the contrary, that M is not a maximum matching in G. Let M’ be a maxi-
mum matchingin G. Then |[M’'| > |[M|. If M C M’, then there exists aline e belonging
toM' — M inG[V(G)— V(M)]. Therefore M U {e} isamatching of G, a contradiction.
ThusM € M'. Lee H = M@ M. Then MNH # @and M N H # @. If there
existsalinee € M N H which is not adjacent to any lineof M’ N H, then M’ U {e} is
amatching of G, contradicting the maximality of M’. Therefore every lineof M N H
is adjacent to one or two lines of M’ N H. If there existsalinee’ € M’ N H whichis
not adjacent to any lineof M N H, then ¢’ isalinein G[V(G) — V(M)] and M U {e}
isamatching in G, contradicting the maximality of M. Therefore every lineof M’ N H
is adjacent to one or two lines of M N H. Thus each component of H iseither an even cy-
clewith lines alternately in M and M’ or else a path with lines alternately in M and M'.
By |[M’'| > |M]|, there must be a path component P of H, and P must start and end with
linesof M’. The origin and terminus of P, being M’-saturated in H, are M -unsaturated
inG. Thus P isan M-augmenting path in G, acontradiction. Therefore M is maximum
in G. The proof is complete. a

3. DNA computing of bipartite graphsfor maximal matching

In this section, G denotes a bipartite graph.
A function f : A — B issaid to beinjective (or one-to-one) provided

fordla,a’ e A, a#d = f(a)# f(d).

A function f is surjective provided f(A) = B. A function f is said to be bijective (or
a one-to-one correspondence) if it is both injective and surjective. Let {A; | i € I} be
afamily of sets indexed by a (nonempty) set 7. The Cartesian product of the sets A; is
the set of all functions f : I — J,.; A; suchthat f(i) € A; fordli e I. Itisdenoted
[Lic; A 11 ={1,2,...,¢},theproduct [,_, A; isoftendenoted by A1 x Asx---x 4,
and is identified with the set of al ordered ¢-tuples (a1, ay, ..., a;), where aq; € A; for
i=12...,¢t.

Let S, be the symmetric group. The product of cycles « 8 means 8 followed by .
For example, (12)(13)=(132). We will be using a one-row representation for permutea-
tion. Thus, the permutation whose cycle representation is (12)(345) will be represented
by us as 21453.

Let m be a minimum integer such that 4" > n. Set (n) = {1,2,...,n}, (4") =
{1,2,....,4"}and A; = {1, 2, 3, 4}.

Theorem 3.1. There exists aninjection from (n) to [['_; A;.

Proof. There exists abijection f from (4”) to [, A;. Becauseof n < 4", f isan
injection from (n) to [T/, A;. The proof is complete. O
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Wewill usetheset {A, T, G, C} instead of {1, 2, 3, 4}.

Corollary 3.2. Let B, = {A,T,G, C}. Then there exists an injection from (n) to
[TiLy B

By corollary 3.2, let f be an injection from (n) to [[/L; B;. For any g =
iig...iy € Sy, &t f(g) = f()f(i2)... fG) and f7(g) = () ... [~ () f~ ().
For example, f:1 — AT, 2 — AG,3 —> AC,4 —» TG, 5 — TC. For g = 12345,
f(g) = ATAGACTGTC3 and f~(g) = 3CTGTCAGATA. The symbol f(g)
is used to indicate the complementary base of each base of f(g). For example,
f(g) = AGCT3 and f(g) = ITCGA. Let g* € S, with f(g) = f(g%). Let

fS) ={f(g)geS,}andSc={f(g): f(g) = f(g.g e S} ThenS. C f(S,).

Proposition 3.3. f—(g) = f(g) if and only if f(g) can form ahairpin (a completely
complementary double strand).

Proof. (only if). Suppose f—(g) = f(g). Then nm is even (n and m are defined as
above). Theith baseof f(g) iscomplementary tothe ith base of f~(g). Theith base of
f~(g) andthe (mn — i + Lthbase of f(g) arethe same. Therefore the ith base of f(g)
is complementary to the mn — i + 1)th base of f(g). Thus f(g) can form ahairpin.
(if). Suppose that f(g) can form a hairpin. Then the ith base of f(g) is comple-
mentary to the (mn — i 4+ 1)th base of f(g). The (mn — i 4+ 1)th base of f(g) and the
ith base of f~(g) arethe same. Therefore the ith base of f(g) is complementary to the
ithbaseof f~(g),i.e, f=(g) = f(g). The proof is complete. O

Proposition 3.4. Letg;, g; € S, withg; # g;. Then f(g;) # f(g;).

Proof. Letg; = iii...i, and g; = jijo...j,. Since g; # g;, thereis an integer b
(1 < b < n)suchthat i, # j,. f(ip) # f(j,) because f isinjective. Therefore
f(g) # f(g;). The proof is complete. O

Theorem 3.5. Let G be abipartite graph with |V (G)| = k. Then there exists a positive
integer n such that n! > 2k + | S¢|.

Proof. Letg = iqiy...i, with f(g) € S.. Then by proposition 3.3, f(g) can form a
hairpin. Therefore the ith base of f(g) iscomplementary to the (mn — i + 1)th base of

f(©). Thus, f(i1) = f~(@n)s ..., flin2) = f~(inj211). Therefore|Se| < n(n—-2)--- 2.
We replace n with n + 1. We have the following:
n+D-n+DHn-Hn —-3)---3
=m+Dn'——-Dn—3)---3)>n+D(n!—nmn—2)---4.2)
= (n!—n(n—2)---2)+n(n!—n(n—2)---2).
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Therefore there exists a positive integer n such that n! > 2k + |Sc|. The proof is com-
plete. O

By theorem 3.5, there exists a minimum integer n such that n! > 2k + |S¢|. Let
V(G) =11, 2,..., k}. Wegive the following.

L abel algorithm 3.6.

Sep 0.7 :=1.

Sep 1. If i = k + 1, then stop.

Sep 2. Let f(g) € f(S,) — Sc. Assign f(g;) to the label of the point i of G.
F(Sn) — S = f(Sw) —{f(g), f(gH}tandi:=i+ 1. Returntostep 1.

We begin by labeling two test tubes: Points and Lines. Let us abbreviate these
labelsto PO and LI.

Design 3.7. For every i € V(G), by label algorithm 3.6 the point i islabeled by f(g;).
Therefore PO = {f(g): 1 < i < k}. In LI we place the following molecules that
encode any line (ij) € E(G):

1 (&) f(g)),
where f(g;) isthe label of the point i and f(g;) isthe label of the point ;.

Theorem 3.8. Thefollowing is contained:
(&) all labelsof the points of G are different;
(b) thelabel of each point of G does not form ahairpin;
(c) thelabel of each arc of G does not form a hairpin.

Proof. (&) By proposition 3.4 and label algorithm 3.6, the all Iabels of the points of D
are different.

(b) By proposition 3.3 and label agorithm 3.6, the label of each point of G does
not form ahairpin.

(c) By proposition 3.3, label agorithm 3.6 and design 3.7, the label of each arc
of G does not form a hairpin. The proof is complete. a

DNA algorithm 3.9.

Sep 1. Add PO and LI. Add aligase. (Allow time for ligation.)

Sep 2. Make agel separation.

Sep 3. Make polymerase chain reaction and sequence for all ssDNAs (single
stranded DNA molecules) of length = »n and dsDNAs (double stranded DNA mole-
cules).

Comment. (a) We can obtain all points corresponding to all ssDNAs of length = n.
They are exposed.
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(b) We can obtain al lines corresponding to al dsDNAs. They form a maximal
matching.

4. DNA computing of bipartite graphsfor maximum matching

Let G = (U, W) be aconnected bipartite graph with the bipartition U and W. Let
M be amaxima matching of G = (U, W) and let M cover U; C U and W, C W. By
DNA agorithm 3.9, weobtain M, Uy and Wy. Set U’ = U — Uy, W = W — Wy and
U’ =T(W). U’ C U because G isbipartite. U' N U"” = ¢ because M is amaximal
matching. If U’ or W' = @, then M ismaximum. So suppose that U’ # ) # W'. Then
U” # @. An augmenting path must start by constructing an aternating path from the
exposed points. Because an augmenting path must have one endpoint in U and the other
in W, it is no loss of generality to start growing alternating paths only from exposed
points of U.

The digraph with respect to G = (U, W) and M, denoted by D = (U, A), isthe
digraph with point set U and arc set A, where (11, up) € A if and only if u; is adjacent
to the mate of u, in G.

Theorem 4.1. Let M beamaxima matching of G = (U, W) andu; € U, w; € W(1 <
i <t,t > 2). Thenthere exists an M-augmenting path uywiuow; . .. u,w, in G if and
only if there exists adirected path uqus . .. u; withu; € U’ andu; € U” in D = (U, A).

Proof. (only if) Let uywiuows...u,w, be an M-augmenting path in G. Then
{fwiniy: 1 < i < t—1 € M, and u; and w, are exposed in G. Therefore
up € U, w, € Wandu, € U”in G. By the definition of D, uju,...u, isadirected
path fromu, € U' tou, € U”in D.

(if) Let uius...u, be adirected path fromu, € U' tou, € U” in D. Then by
the definition of D, uywiuows,. .. u, is an M-dternating path with {w;u; 1: 1 < i <
t—1} C MinG. Sinceu, € U”, there existsapoint w, € W’ such that w, is adjacent
to u,. Thus, uywiuw; . . . u, w, isan M-augmenting path. The proof is complete. O

Example 4.2. Infigurel, thegraph (a) isabipartitegraph. Let M = {uywa, uzws, usws,
uswe, ugws}. Then M isamaximal matching. U’ = {uz}, W = {w1} and U” = {u,}.
The digraph (b) corresponds to the graph (a).

We begin by labeling three test tubes: Initials, Middles and Finals. Let us abbrevi-
ate these labelsto INI, MID and FIN.

Design 4.3. For every pointi € U’, in INI we place the following molecules that encode
the point i:

f(g)REGION1f(g;)
f(g)REGION1,

*
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where f(g;) is given by label algorithm 3.6 and the REGIONL is put by an especial
dsDNAs which can be cut by a special restriction enzyme.

For every point i € U”, in FIN we place the following molecules that encode the
point i:

f(g)REGION2f (g;)
REGION2f (g;),
*
where f(g;) is given by label algorithm 3.6 and the REGION2 is put by an especial
dsDNAs which can be cut by a specia restriction enzyme.
For every pointi € U — U’ — U”, in MID we place the following molecules that
encode the point i:

f(g) f(g)s

where f(g;) is given by label agorithm 3.6.
For every arc (i, j), in MID we place the following molecules that encode the arc

(i J):
Fen g,
where f(g;) and f(g;) are given by label algorithm 3.6.
By label algorithm 3.6 and design 4.3, we have the following.
Theorem 4.4. Thefollowing is contained:
(a8 all labelsof the points of D are different;
(b) thelabel of each point of D does not form a hairpin;

(c) thelabel of each arc of D does not form a hairpin.
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Asistypical in DNA computing, each of three test tubes INI, FIN and MID will contain
on the order of apicomole of each of the chosen molecules, i.e., on the order of atrillion
of each.

DNA algorithm 4.5.

Sep 1. Attract the molecules of INI and the molecules of FIN to the surface by a
biotin. The starred region indicates the region of attachment to the surface.

Sep 2. Add MID. Add aligase. (Allow time for ligation.)

Sep 3. Wash away excess MID and ligase.

Sep 4. Add restriction enzyme 2. (Allow time for enzyme 2 to act.)

Sep 5. Wash away al DNA not attached to the surface and all enzyme.

Sep 6. Add ligase. (Allow time for ligation.)

Sep 7. Wash away ligase.

Sep 8. Add restriction enzyme 1. (Allow time for enzyme 1 digestion.)

Sep 9. Wash away all DNA not attached to the surface and al enzyme.

Sep 10. Add ligase. (Allow time for ligation.)

Sep 11. Wash away ligase.

Sep 12. Detach dsDNAs from the surface. Make agel separation.

Sep 13. Make polymerase chain reaction and sequence for all dsDNAs of length
> 4n.

Theorem 4.6. If there exists a path from iy € U’ toi, € U” in D, the redtriction
enzyme 1 can only cut the dsDNAs of REGION1 and the restriction enzyme 2 can only
cut the dsDNAs of REGIONZ2, then the path fromi; € U’ to i, € U” can be obtained by
DNA algorithm 4.5.

Proof. Letijeiizes...i,_16, 11, beapahwithi; € U andi, € U”. Applying step 1
of DNA algorithm 4.5, attract the dsSDNAs of INI of design 4.3 and the dsDNAs of FIN
of design 4.3 to the surface by abiotin. Therefore,

f (i) REGION1f(g;,)
f(g,)REGION1

and

f(giU)REGIOsz(giU)
REGION2f(g;,)

are attracted to the surface by a biotin. Applying step 2 of DNA algorithm 4.5, we can
obtain the following path (abbreviated P1):
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S (8i, )REGION1f (gi)) f(8:,) f(8ir) - - - f(8:, )REGIONZf (gi,)
f(8i, )REGION1f (gi)) f(8i,) f(8ir) - - - (8, )REGION2f (gi,).

Applying step 3 of DNA agorithm 4.5, wash away excess MID and ligase. Applying
step 4 of DNA agorithm 4.5, we can obtain the following:

f (g, )REGIONLf (gi,) f(8i,) f(gi,) - - - f(gi,)REGION2f (gi,)
f (g )REGIONLf (gi,) f (i) f(gir) - - - f(g:,)REGION2f (g;,).

Applying step 5 of DNA agorithm 4.5, cannot wash away the above dsDNAS because
they are still attached to the surface. Applying steps 6, 7 of DNA algorithm 4.5, obtain
P1 again. Applying step 8 of DNA agorithm 4.5, we can obtain the following:

f(gi))REGIONLf (gi) f(gi,) f(&i,) - - - f(gi,)REGION2f (g;,)
f(gi)REGION1f(gi,) f(8i,) [ (&ip) - - - f(&:,) f(&i,)-

Applying step 9 of DNA algorithm 4.5, cannot wash away the above dsDNAs because
they are still attached to the surface. Applying steps 10, 11 of DNA agorithm 4.5, obtain
P1 again. Applying step 12 of DNA agorithm 4.5, detach P1 from the surface. Make
a gel separation and obtain all dsSDNAs corresponding to the paths from one of U’ to
one of U". Clearly, P1is one of them. Applying step 13 of DNA algorithm 4.5, make
polymerase chain reaction and sequence for al dsDNAs of the paths from one of U’ to
one of U"”. Finally, we can obtain P1. The proof is complete. a

Remark. If there isno path from one of U’ to one of U"” corresponding to one dsDNAS,
then there is no M-augmenting path in G = (U, W). By theorem 2.1 M is maximum.
If there is apath P from one of U’ to one of U” corresponding to one dsDNAs, then
P corresponds to an M-augmenting path P’ inG = (U, W). Lee M’ = M & P'. Then
M’ isamaximal matchingin G = (U, W). We proceed as above. Finaly, we can obtain
that there is no path from one of U’ to one of U” in D = (U, A) corresponding to one
dsDNAs. Thus we can obtain a maximum matching in G.
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